The Bilinear Maximal Function Maps into L P for 2=3 < P 1

نویسنده

  • Michael T. Lacey
چکیده

The bilinear maximal operator de ned below maps L L into L provided 1 < p; q <1, 1=p+ 1=q = 1=r and 2=3 < r 1. Mfg(x) = sup t>0 1 2t Z t t jf(x+ y)g(x y)j dy In particular Mfg is integrable(!) if f and, g are square integrable, answering a conjecture posed by Alberto Calder on. 1 Principal Results In 1964 Alberto Calder on de ned the maximal operator Mfg(x) = sup t>0 1 2t Z t t jf(x y)g(x y)j dy; 6= 1 which has come to be known as the bilinear maximal function. He raised the striking conjecture that Mfg is integrable if f and g are square integrable. A proof of this and more is provided in this paper. 1.1. Theorem. Let 1 < p; q < 1 and set 1=r = 1=p+ 1=q. If 2=3 < r 1 then M maps L L into L. Now, if r > 1 the bilinear maximal function maps into L, as follows from an application of Holder's inequality in the y variable. Thus the interest is in the case 2=3 < r 1. That r can be less than one is intriguing and unexpected. Our proof forsakes the maximal function for the maximal truncations of singular integrals. Let K(y) be a singular integral kernel. Thus K(y) is a distribution on R which for y 6= 0 satis es jK(y)j C jyj (1.2) d dy K(y) C jyj2 ; (1.3)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bilinear Maximal Functions

The bilinear maximal operator defined below maps L × L into L provided 1 < p, q <∞, 1/p+ 1/q = 1/r and 2/3 < r ≤ 1. Mfg(x) = sup t>0 1 2t ∫ t −t |f(x+ y)g(x− y)| dy In particular Mfg is integrable if f and, g are square integrable, answering a conjecture posed by Alberto Calderón. 1 Principal Results In 1964 Alberto Calderón defined a family of maximal operators by Mfg(x) = sup t>0 1 2t ∫ t −t ...

متن کامل

The bilinear maximal functions map into L p for 2 / 3 < p ≤ 1

The bilinear maximal operator defined below maps Lp × Lq into Lr provided 1 < p, q < ∞, 1/p + 1/q = 1/r and 2/3 < r ≤ 1. Mfg(x) = sup t>0 1 2t ∫ t −t |f(x+ y)g(x− y)| dy. In particular Mfg is integrable if f and g are square integrable, answering a conjecture posed by Alberto Calderón. 1. Principal results In 1964 Alberto Calderón defined a family of maximal operators by Mfg(x) = sup t>0 1 2t ∫...

متن کامل

Se p 20 14 L p ESTIMATES FOR THE BILINEAR HILBERT TRANSFORM FOR 1 / 2 < p ≤ 2 / 3 : A COUNTEREXAMPLE AND GENERALIZATIONS TO NON - SMOOTH SYMBOLS

M. Lacey and C. Thiele proved in [26] (Annals of Math. (1997)) and [27] (Annals of Math. (1999)) that the bilinear Hilbert transform maps L1 × L2 → L boundedly when 1 p1 + 1 p2 = 1 p with 1 < p1, p2 ≤ ∞ and 2 3 < p < ∞. Whether the L estimates hold in the range p ∈ (1/2, 2/3] has remained an open problem since then. In this paper, we prove that the bilinear Hilbert transform does not satisfy an...

متن کامل

The Disc as a Bilinear Multiplier

A classical theorem of C. Fefferman [3] says that the characteristic function of the unit disc is not a Fourier multiplier on L(R) unless p = 2. In this article we obtain a result that brings a contrast with the previous theorem. We show that the characteristic function of the unit disc in R is the Fourier multiplier of a bounded bilinear operator from L1(R) × L2(R) into L(R), when 2 ≤ p1, p2 <...

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001